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Limiting Shear Dependence of the Intrinsic Viscosity 
of Deformable Polymer Molecules*t 

H. VAN OENE,S Department of Chemistry, University of Alberta, 
Edmonton, Alberta, Canada 

Synopsis 
Previous theories of the shear dependence of the intrinsic viscosity of deformable 

polymer molecules are reviewed. Most of these theories, except those of Cerf and 
Kuhn and Kuhn, predict that for a polymer homologous series the shear dependence 
[ q ] / [ q ] ~  can be expressed in terms of the reduced parameter (M[7]o/RT)q.q. Such a 
representation is not in agreement with experimental findings. In this paper a phenom- 
enological model is presented in terms of the Oldroyd rheological equations of state. 
This model allows one to take into account the finite deformation of the molecule. 
In terms of this model finite deformation leads to a retarded elasticity, which can be 
described in terms of the recoverable shear but which does not influence the shear 
viscosity. The retarded elasticity results, however, in a shift of the [ q ] / [ ~ ] o  versus ( M -  
[7lo/RT)7q ciirve along the reduced stress coordinate. This shift is proportional to 
the molecular weight and independent of the solvent viscosity. Comparison with 
experiment shows the existence of the predicted shift factor for series of measurements 
on fractions of polystyrene in a good solvent. The one series of measurements in a 
theta Yolvent reveal that in such a solvent the shift vanishes. The implications of this 
finding are discussed. The shift factor is also shown to have many properties in com- 
mon with the inner viscosity as defined by Cerf and experimentally evaluated by Leray 
from the velocity-gradient dependence of the extinction angle. 

Introduction 

Since the early theories of Kuhn132 and Peterlin3v4 showed that the struc- 
tural viscosity often observed in even dilute solutions of polymer molecules 
could be described in terms of an orientation of a rigid, asymmetric particle 
(dumbell, ellipsoid) with respect to the direction of the velocity gradient, 
niariy attempts have been made to refine these model theories so as to be 
applicable to solutions of deformable polymer molec~les.~-14 

If orientation is the only cause of shear dependence, the predictioiis of 
the pertinent theory can be summarized as follows. The shear deperidence 
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expressed by means of the ratio [?I]/ [vlO, where [7lo is t.he intrinsic viscosity 
at zero shear and [ v ]  the intrinsic viscosit,y at finite shear, is an even func- 
tion of the parameter q/Dmt, where q is the velocity gradient, and Dmt the 
rotational diffusion coefficient. For polymer molecules the rotational 
diffusion is given by RT/M[ . I I ]O . I I~ , '~  hence q/Drot = (M[v]o/RT)vsq, and 

where M is the molecular weight of the polymer, R the gas constant, 1' the 
temperature, qa the viscosity of the solvent, and n a whole number > 1. 
The coefficients in the power series depend only on the asymmetry of the 
molecules. For rigid ellipsoids these functions have been calculated by 
Scheraga. l6 Experimentally the rigid ellipsoid case is well verified. 17 

The question of whether or not additional shear dependence, due to the 
deformability of the molecule is to be expected, or whether or not deforma- 
bility in itself will give rise to shear dependence of [ v ] ,  has been treated in a 
number of different ways with conflicting results. 

This co- 
efficient is related to the resistance to deformation of the polymer coil; 
more precisely, it is the resistance opposing a rate of change of the end-to- 
end distance of the polymer molecule. This resistance to deformation will 
make the diffusion coefficients associated with motion of the segments in 
the radial direction (Drad), i.e., the direction of the end-to-end vector h, 
differ from the diffusion coefficient associated with the motion of the seg- 
ments in a tangential direction (Dtanp), which motion is only opposed by 
the viscous forces of the solvent. Because of the inequality of the diffusion 
coefficients, shear dependence results and is a function of (Dtang/Drad) - 1. 

In the Kuhn and Kuhn theory, the latter quantity is proportional to 
1/M[r]Io. Hence, as the molecular weight of the polymer increases, the 
shear dependence due to the deformability of the molecule vanishes rapidly. 
Since this effect is superimposed over the effect of orientation, this theory 
would imply that if the sheardependence is considered at constant q/Drot = 
(M [q]o/RT)v,q a polymer molecule with a higher molecular weight should 
show less shear dependence as expressed by the magnitude of [11]/[vl0. 
This is in good agreement with the data of Lohmander and Svensson.l* 
Nevertheless, it is difficult to ascertain whether there is quantitative agree- 
ment with the Kuhn and Kuhn theory. 

Copicklo and Peterlin and Copickg point out that for a given end-to-end 
vector h the configurations of the polymer molecule are not spherically 
symmetric. The asymmetry of the configuration will result in anisotropic 
hydrodynamic interaction, and hence the radial and tangential diffusion 
coefficients will be unequal. The shear dependence in their theory can be 
expressed as : 

Kuhn and Kuhn6 introduced the coefficient of inner viscosity. 
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related to the average configuration of the molecule and independent of the 
molecular weight. A similar theory has been developed by Ikeda," who 
obtains by a different method of averaging the much smaller value of 0.0196 
for f .  These theories, therefore, predict that as the molecular weight 
increases, the shear dependence increases also, which prediction is in good 
agreement with experimental e v i d e n ~ e , ~ J ~ . ~ ~  but they also predict that for a 
polymer homologous series the shear dependence should be expressable as 
an unique function of q/Drot, which is not in agreement with experiment. 
The recent data of Lohmarider et a1.18,m,21 show clearly that the shear 
dependence is not a simple reduced function of (M[q]o/RT)q,q, neither a t  
extremely low shear rates nor at intermediate and high shear rates. 

Essentially, the theories of I h h n  and K ~ h n , ~  Peterlin and Copick,g and 
Ikedall deal with the change in gross hydrodynamic resistance or changes 
in hydrodynamic interaction between the segments of the polymer molecule 
on deformation. In both theories the resulting expressions differ from the 
rigid particle theories, where shear dependence arises as a result of orienta- 
tion only in the numerical values which multiply the parameter q/Dmt. 

With the aid of a different model for the intrinsic viscosity it is possible 
to analyze in greater detail the influence of deformability or the elasticity 
of the molecule on flow behavior. The model most widely used is the one 
due to RouseZ2 and Zimm.23 In this model the polymer is replaced by an 
equivalent array of Hookean springs. The deformation of this set of 
springs can be analyzed by means of a normal mode analysis and is de- 
scribed by p principal modes of deformation, each associated with a relaxa- 
tion time rp .  The relaxation spectrum is determined from the configura- 
tion of the molecule. The shear viscosity can be written down imme- 
diately, with the aid of the Maxwell definition of viscosity:22 

q = qs + ( cN/M)kTZr ,  (3) 
where q is the viscosity of the solution, qs is the viscosity of the solvent, c is 
concentration (in grams/milliliter) , and M is molecular weight. 

The Rouse-Zimm (R-Z) theory itself is mainly concerned with the inter- 
pretation of so-called "dynamic" experiments. In a dynamic experiment 
the polymer solution is subjectzed to a periodic force witjh variable frequency 
o. The R-Z theory then predicts inter alia the existence of a complex 
dynamic viscosity, given by : 

q* = 71 + i l l 2  

91 = VS + ( cRT/M)ZTp/ ( l  + 0 2 T p z )  

where 

(4) 
arid : 

qz = (cRT/M)ZWrp/( l  + o2rP2) 

The real part of the complex dynamic viscosity is proportional to the 
energy dissipated, the imaginary part is proportional to the energy stored. 
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At zero frequency the real part becomes equal to tho steady flow viscosity, 
and the imaginary part vanishes. 

Since no shear dependence of the intrinsic viscosity is obtained from the 
R-Z theory itselflZ3 various additional assumptions have been incorporated 
into the original R-Z theory, with the aid of which it is possible to predict 
the shear dependence of the intrinsic viscosity. The resulting theories7JJ2lla 
are, however, not in agreement with each other. Nevertheless it is instruc- 
tive to discuss these modifications in some detail. 

As Debye2‘ showed, in steady shear the molecule in solution is subjected 
to a steady rotation with a frequency equal to 1 / 2 q .  This rotation causes 
the molecule to be alternately stretched and pushed. If one now were 
to choose a coordinate system fixed in the molecule performing the same 
(rigid) rotation as the polymer molecule, then in this coordinate system 
the forces experienced by the molecule are periodic and hence one could 
take the effect of the velocity gradient on the shear viscosity to be equiv- 
alent to that of frequency on the dynamic viscosity. 

Following this line of argument Bueches and Takemura12 obtained expres- 
sions for the shear dependence of the intrinsic viscosity. In Takemura’s 
theory this expression is given as : 

or to order q2 

= 1 - 4M[rllo/RT)lloq2 (6 )  

where U R ~ ~ ~ ~  = 0.400, a z i m m  = 0.200. 
Moreover Bueche introduces 

a shielding parameter in order to obtain agreement with dilute solution 
data. 

However, there are a number of difficulties inherent in the above argu- 
ment. PaoI3 raises the question as to whether it is sensible to speak of 
complete rotations of the deformed dynamical states, an assumption 
implicit in the theory of Bueche and Takemura. If by sufficiently rapid 
internal adjustment of the segments the deformed states could relax to the 
undeformed state in the time it takes the molecule to complete only a 
fraction of a rotation, then the species in solution for which one wants to 
calculate the intrinsic viscosity would be substantially undefonned, be 
almost spherical and show hardly any shear dependence. Since the de- 
formation of the molecule can be described in terms of the magnitude of 
the displacement gradient, Pao13 introduces a “recoverable” displacement 
gradient 6, given by: 

Bueche’s expression is slightly different. 

N N 
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Pm's theory results in a shear dependence of the form: 
N c [fPP2/(1 + q2rp2)1 

(8) 
+ P = = l  

2 r p 2  2[7,/(1 + q 2 r p 2 ) 1  

[rllo = (RT/100Mrl,)ZTp 

which, to order q2 can be expressed as: 

b?l/[rlIo = 1 - 422:rP211 - [ 2 T P 2 / / ( ~ % J > 2 1 1  (9) 
the quantity 2rp2/(2rp)'  is a constant equal to 0.400 or 0.200, depeiiding 
on whether Rousez2 or ZimmZ3 relaxation times are used. 

Comparison of the Takemura and Pao formulae reveal that both theories 
predict a possible reduced representation of the shear dependence by means 
of a plot of [TI/ [rll0 versus ( M  [q ]o/RT)q,y. This, as already noted is not 
in agreement with experimental findings. It is noteworthy, however, that 
Pao's recoverable displacement gradient shifts the Takemura curve to 
higher reduced velocity gradient but leaves its shape essentially unchanged. 

Cerf's treatment6J of inner viscosity in terms of the R-Z theory is rather 
different. He writes the rates of deformation of the principal modes of 
deformation as the sum of a pure rate of deformation and a rigid rotation: 

s p '  = 8p.d' + s p , w '  

where sp' is the rate of deformation of the pth mode, s , .~ '  is the pure rate 
of deformation of the pth mode, and s ~ , ~ '  is the rigid rotation of the pth 
mode. Since a rigid rotation leaves the deformation unchanged he asso- 
ciated an inner viscosity with the pure rate of deformation term only. 

The addition of the term @(sp' - sp,,') to the diffusion equation, then, 
leads to a shear dependence of the form: 

N 

where r p  is the R-Z relaxation time, rp' = rp(l + ppvp) and pp is the pth 
coefficient of inner viscosity. 

(11) 

To order q2 this yields 

h I / h l O  = 1 - 2 = P ( r P r  - TP)Q2  

If rp  = rP', then the shear dependence vanishes completely. Moreover 
the shear dependence cannot be expressed as an unique function of y/Dmt 
because the inner viscosity term depends on molecular weight.' Cerf's 
inner viscosity term could be deduced from shear dependence data alone, 
but the evidence can be obtained more directly from the velocity gradient 
dependence of the extinction angle. This dependence is: 

X/Y = 1 / 2 ( 2 r P T P ' / = P )  - a, (M[rlIo/RT)r)o + W m 2 ) / R T )  (12) 
where x is the extinction angle, a, b are numerical coefficients, 5 is the 
coefficient of inner viscosity, and (h2) is the end-to-end distance of the un- 
deformed polymer molecule. 
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The last term is the inner viscosity term, which is independent of the 
solvent viscosity and proportional to (h2). 

The streaming birefringence results of L e r a ~ * ~  provide strong support 
for the Cerf theory. However, Leray found that the inner viscosity term 
is proportional to the molecular weight of the molecule, hence indicating 
that not the actual end-to-end distance of the molecule appears in eq. (12) 
and also that the inner viscosity is independent of the concentration. 

Recently Peterlin14 has examined the effect of the change in hydro- 
dynamic interaction between segments on deformation of the molecule. 
This theory predicts an eventual increase in viscosity as the shear stress 
becomes very large. It also predicts that a plot of [ q ] / [ q l O  versus q/Dmt 
will not reduce the shear dependence for a polymer homologous series, even 
though at low shear stresses this effect is small. Judging from Lohmander's 
dataig the upturn of the intrinsic viscosity seems to be overestimated by 
this theory by about a fact.or of 50. In the low stress region the predictions 
of the recent Peterlin theory are essentially the same as those of the earlier 
theory of Peterlin and Copick. 

From this brief summary of the various theories which deal specifically 
with the shear dependence of the intrinsic viscosity of deformable molecules, 
the following points of view emerge. (1) The shear dependence is essen- 
tially similar to that observed with rigid asymmetric particles. The only 
difference is that with flexible molecules the asymmetry is not that of shape 
but due to the resistance to deformation which causes the two diffusion 
coefficients Drad and Dtang to be unequal. For a perfectly flexible molecule 
these two coefficients are equal,26 and hence the shear dependence vanishes. 
The asymmetry may be also thought of as an inherent property of the con- 
figuration of the molecule 

(2) In the framework of the Rouse-Zimm theory no shear dependence 
is obtained,23 unless one makes an assumption about the equivalence of 
frequency and velocity gradient as was done by Takemura.12 In order to 
obtain some measure of agreement with the experimental data an additional 
assumption is required pertaining to shielding of segments by segments,* 
or similarly one can introduce a retardation tirne.'j,13 

The only theory which predicts correctly the gross features of the limiting 
shear dependence on the intrinsic viscosity, i.e., the nonreducibility of a 
plot of [ q ] / [ q l 0  versus (M[q]o/RT)qsq is Cerf's theory and probably the 
early Kuhn and Kuhn theory, as interpreted in the above discussion. 

In this paper a phenomenological description is given of the flow be- 
havior of a liquid in which the elastic effects associated with the deforma- 
bility of the solute can be characterized in terms of a relaxation and retards 
tion tinie. The particular treatment is due to ReinerZ7 and Oldroyd.?R 
Attention is focussed on the fact that if in flow the inolecule is deformed, 
the shear stress has to maintain this deformation. If the net deformation 
of the solute can be expressed by means of a Kelvin element, a simple 
theory results in which the nonreducibility of the [ q ] / [ q I o  versus ( M [ q l o /  
RT)qoq plot is a direct consequence of the finite deformation of the polymer 
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molecule. 
experiment. 

At least qualitatively, the proposed theory is confirmed by 

Description in Terms of a Rheologicai Equation of State 

As a model for the rheological behavior of a dilutc solution of deformable 
polymer molecules we will choose the generalized Maxwell liquid, first 
proposed by J e f f r e y ~ . ~ ~  Its applicability to dilute suspensions of elastic 
spheres was demonstrated by Frohlich and Sack;30 O l d r ~ y d ~ ~  used it to 
describe the flow behavior of emulsions and also derived earlier% the various 
possible generalizations of this liquid. In  its simple form, the liquid can 
be represented by the equation: 

s + ST,i = 271,(d + T r e t d )  (134 
where Y is the shear stress; d ,  the shear rate; Trel a relaxation time; Tret a 
retardation time, and T L  the observed shear viscosity. It is a liquid char- 
acterized by a relaxation time and a retardation time. As it stands, the 
equation is not a “proper” rheological equation of state, unless one further 
specifies how the time derivatives are to be taken.28.32 Oldroyd’s theory 
leads to an equation of the form: 

(13b) 

where uiK is the stress tensor; eik, the velocity gradient tensor; XI, a relaxa- 
tion time; xz, a retardation time; 70, the zero shear viscosity; and a)/a)t, 
a symbol for the generalized convected time derivative. Nevertheless an 
important distinction due to ReinerZ7 can already be made between two 
possible phenomenological representations which both admit to a descrip- 
tion in terms of eq. (13). 

t f 

b 

J-BODY L- BODY 

Fig. 1. Diagram of J-body and L-body (after Reiner27). 
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If viscous contributions are represented by Newtonian dashpots and 
elastic contributions by Bookean springs, then according to ReinerZ6 there 
are two ways of connecting the two dashpots and one spring, required to 
represent a body whose mechanical and flow behavior are represented by 
eq. (13); the one is called L-body (named after Lether~ich~~) the other is 
called the J-body (named after JeffreysZ9). The L-body is essentially a 
liquid, the J-body a “relaxing” gel. The two representations are illustrated 
in Figure 1. 

The L-body is characterized by the parameters: 

where p is the modulus of elasticity of the Hookean spring; 
tonian viscosity, and VK the solid viscosity of the Kelvin element. 
e shear viscosity equal to the viscosity of the Newtonian dashpot only: 

is a New- 
It has 

VL = ?N 

This Newtonian viscosity includes the viscous resistance of the solute due 
t,o the size and shape of the parti~le.~O 

The J-body is characterized by the parameters: 

where 7)M is viscosity of the Maxwell element and p the modulus of elasticity 
of the Hookean spring. It has a shear viscosity equal to the sum of the 
viscosity of the Rfaxwell element and the viscosity of the Newtonian dash- 
pot : 

?L = TN + ?M 
The J-body representation is usually considered to be also applicable to 

dilute solutions of deformable polymer molecules. 22, 34 It would appear, 
however, that the L-body description is more pertinent for present pur- 
poses. 

“When the solvent is subjected to continuous deformation or flow in 
which the suspended particles participate, forces are exerted by the solvent 
upon the ‘springs’ which are extended and compressed, and which they can 
resist elastically. The elasticity of the dispersed system accordingly re- 
sides in the solute; when the flow stops, extended springs contract etc. and 
the internal stresses of the system disappear. Because of the viscous 
resistance of the solvent this takes time and thus simulates a relaxation 
time.” 

Independent of the specific interpretation of the relaxation and retarda- 
tion time, the generalization by Oldroyd28~32~35 of eq. (13a) to a proper 
rheological equation of state enables one to write down explicit,ly the stress 
system required to maintain a steady shear flow. The Oldroyd equations 

It specifically applies to a liquid in which, according to Reiner127 
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predict in general the occurrence of normal stresses; moreover, these 
equatioiis predict in addition a dependence of the shear viscosity on the 
magnitude of the velocity gradient.28~32~35 For the initial shear dependence 
of the viscosity Oldroyd obtains approximately : 

B l B O  = 1 + Xl(X2 - XdK2 (16) 

where K is the magnitude of the velocity gradient, X1 is a relaxation time, 
and is a retardation time. 

If one identifies Xi 
with r p  and XZ with rP1,  then the shear dependence predicted by the Oldroyd 
equations is identical to that predicted by eq. ( l l ) ,  which follows from 
Cerf's theory. 

From the Oldroyd equations one can also derive a quantity s, called the 
recoverable shear, defined as: 

(17) 

This quantity occurs frequently in the literature concerned with the 
experimental evaluation of functions arising in rheological equations of 
state, and can be regarded as a measure of network ~train.~6 

According to Philippoff ,37 the recoverable shear can also be expressed as: 

No shear dependence is found if Xi is equal to X2. 

s = ( t i1  - t22)/2t12 = ( X i  - XJK 

s = J e t 1 2  = (l/G)tiZ (18) 

where J ,  is the equilibrium elastic compliance, G the shear modulus, and 
t12 the shear stress. Proof of this equality has recently been furnished by 
Coleman and R4arkovitz3* for so-called second-order fluids. Hence the 
quantity s can be regarded also as a reduced measure of finite deformation 
since it is equal to the ratio of the shear stress and shear modulus, in the 
same way as the ratio of the velocity gradient and rotational diffusion co- 
efficient q/Dmt is a reduced parameter for the degree of orientation of a 
particle. On the basis of extensive experimental evidence, Philippoff 37 
also concludes that s, as defined above, is equal to: 

s = 2 cot 2x (19) 

where x is the extinction angle measured in a streaming birefringence 
experiment. 

The name, recoverable shear, is used for s, since it is also a measure of 
that part of the deformation of the liquid which is recovered if the flow 
stops, as evidenced by the fact that s can be evaluated from recoil experi- 
ments. 37 

The stress dependence of the recoverable shear provides an experimental 
criterion for distinguishing between the L-body and J-body and description. 
For the J-body, the recoverable shear according t,o the eqs. (15) and (17) 
is given by the expression: 

8 = [BM/(VN + ~ d I ( t i z / C o  = (1 - ~ / B ~ ) ~ ( ~ I Z / C C )  (20) 
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Hence the slope of the plot of s versus the shear stress depends on the rela- 
tive viscosity and, therefore, also on the concentration of the solution. For 
the range 2> qr > 10, this slope should change by about a factor of three; 
in the range 10 > q,  > 100, it changes by about 20%. 

The recoverable shear for the L-body can be written as 

s = ( T N d I 1 )  = (tlZ/P) (21) 
In this case the slope of a plot of s versus the shear stress is independent of 
the relative viscosity or the concentration of the solution. Such behavior 
is in very good agreement with the corresponding experimental results of 
Philippoff et al.39 for a series of polyisobutylene solutions ranging in con- 
centration from 0.25 to 100% polyisobutylene. 

Unfortunately the data obtained by Oldroyd, Toms, and Strawbridge“-42 
who determined X1 and Xz separately, do not allow for an unambiguous 
distinction between the L-body and J-body representation, because, if the 
viscosity of the Maxwell element in the J-body is very much larger than 
the solvent viscosity TN, then both the L-body and the J-body representa- 
tion yield essentially the same result, i.e., Xz is independent of the viscosity 
and the concentration of the solution. The lack of a concentration de- 
pendence of Xz as contrasted with the pronounced concentration dependence 
of X1 is one of the striking findings in the investigation of Oldroyd, Straw- 
bridge, and Toms. 

Application to the Flow of Dilute Polymer Solutions 
In the previous section a general phenomenological framework was 

discussed for the description of flow of deformable particles. One particular 
model, the L-body, was found to be consistent with experimental findings. 
The characteristic of the L-body is that the “elastic” properties of the liquid 
are described in terms of a Kelvin element. Hence, at  constant stress 
one can write the total stress acting on the liquid as the sum of the stress 
associated with the dashpot, which determines the shear viscosity, and 
the elastic stress, associated with the Kelvin element, which does not con- 
tribute to the shear viscosity. 

Total shear stress = flow stress + elastic stress 

This relationship would not hold, for the J-body, since in this instance one 
has the relationship : 

Hence: 

Total stress = flow stress = elastic stress 

A more physical description of the L-body type liquid would therefore 
be the following: 

In flow the shear stress gives rise to a velocity gradient. Due to the 
presence of the particles, the stream lines are disturbed, and hence the 
deformable particles possess an intrinsic viscosity due primarily to their 
shape and size. The deformation of the molecules may make the molecules 
more asymmetric and may change the hydrodynamic interaction between 
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the segments within the molecule. Both these effects will cause a shear 
dependence of the intrinsic viscosity as was shown by Kuhn and K ~ h n , ~  
l’eterlin and Copickl9 Ikeda,” and Peterlin.14 In the theories cited, these 
two effects of deformability, can be described in terms of the “reduced” 
parameter q/DIot, and both of these effects are, therefore, primarily asso- 
ciated with the magnitude of the velocity gradient. 

As such, the fact that the molecule is deformed is in a sense secondary. 
However, these theories do not take into account the energy required to 
maintain the deformation of the molecule which energy is stored in the 
liquid and recoverable if the flow stops. Therefore, the only direct effect 
of deformation on the flow behavior of the L-body liquid is that not the 
whole applied shear stress will be available to maintain a certain velocity 
gradient. If the elastic part of the stress is interpreted as the shear stress 
required to maintain the deformation of the polymer molecule, then this 
term can be calculated with the aid of an appropriate rheological equation 
of ~ t a t e . ~ ~ - ~ j  Using the Rouse model, which is essentially a Maxwell 
liquid and which rheological equation of state can be obtained from the 
Olroyd equations by putting equal to zero, Ikeda& obtains the following 
expressions for the stress system, required to maintain a steady flow: 

The recoverable shear is, therefore, given by: 

As already pointed out it is useful to consider the recoverable shear as a 
reduced measure of the deformability of the molecule just as the parameter 
q/DIot can be regarded as a reduced measure for the degree of orientation 
of the polymer molecule. 

Since the elastic term arises from the inherent deformability of the mole- 
cule which is determined to a large extent by the configurational entropy, 
the elastic term should be independent of the solution viscosity. Hence 
the relaxation times to be used in evaluating the recoverable shear should 
be those associated with the deformation of the single polymer molecule. 
A possible choice would be the relaxation times with the deformation of a 
single, un-entangled polymer molecule in bulk. For the Rouse model, 
Ferry47 obtains : 
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where M o  is the molecular weight of the monomer and 50 is the monomeric 
friction coefficient ; because of the Gaussian configuration of the polymer 
molecule 50 is inversely proportional to the molecular weight. 

If this choice is made, then the expression for s becomes: 

where 

P = toM/Mo 
On the basis of this interpretation of the L-body, it is possible to write 

down at  once the following expression for the extinction angle. This ex- 
pression will contain two terms, the one associated with the flow stress and 
hence with the velocity gradient due to orientation and the other associated 
with the elastic stress, which contribution according to Philippoff 37,45 is 
equal to  the recoverable shear: 

x = aq/D,,t + s 

or 

This expression has the same form as eq. (12) derived by Cerf.6 One 
could, therefore, identify the inner viscosity term derived by Cerf with the 
recoverable shear as calculated for a simple Maxwell element. If this 
identification is made, the experimental findings of LerayZ5 with respect 
to  the lack of concentration dependence and the proportionality with 
respect to molecular weight of the inner viscosity term appearing in eq. (12) 
can be clarified to a considerable extent. 

The independence of concentration follows since the term represents the 
resistance to deformation of the molecule only. In  dilute solutions one 
would not expect entanglements to  make any contribution to the shear 
modulus of the system. This follows also directly from the data of Philip- 
poff et al.39 on the stress dependence of the recoverable shear of polyiso- 
butylene solutions referred to  previously and the theory of Y a m a m o t ~ . ~ ~  

The proportionality with respect to molecular weight arises in the Cerf 
theory6V7 by replacing the end-to-end distance of the molecule at rest with 
the unperturbed, Gaussian, end-to-end distance. This replacement is 
justified by a recent result of P t i t ~ y n . ~ ~  Ptitsyn analyzes the effect of 
excluded volume on the shear modulus in deformation. He finds that if the 
forces acting on the polymer molecule are small, then the modulus is pro- 
portional to the actual end-to-end distance. If, however, the forces 
acting on the molecule are large enough to orient the molecule as well, 
the modulus becomes proportional to  the unperturbed end-to-end distance, 
regardless of the non-Gaussian configuration of the polymer chain. 

The main result from this analysis of the flow behavior of solutions con- 
taining deformable molecules is that this flow behavior cannot be described 
in terms of a reduced stress of the form q/DrOt, but that the reduced stress 



DEFORMABLE POLYMER MOLECULES 2619 

has to contain an additional deformation term. This follows directly 
from eq. (16) for the shear dependence and eq. (17) for the recoverable 
shear, which equations were derived from the Oldroyd equations. 

Because of the Kelvin element associated with the L-body description, 
the reduced stress governing the shear dependetice of the viscosity is again 
the sum of two terms: (1) an inelastic term, associated with the dashpot 
which determines the shear viscosity, representing the effect of the velocity 
gradient on the flow behavior such as orientation, anisotropic hydrodynamic 
interaction, etc.; (2) an elastic term, which is associated with the finite 
deformation of the molecule and which has been identified with the re- 
coverable shear. It is only this term which has been calculated from an 
appropriate rheological equation of state. 

This functional form of the reduced stress can also be inferred from the 
constancy of the stress optical coefficient in a matching solvent,50 as this 
constancy implies that the shear dependence is given by: 

7/90 = sin 2x 

The shear dependence, therefore, has the same functional dependence 
on total stress as the extinction angle. Hence the following experimental 
criterion for finite deformation can be derived. 

If the polymer molecule is rigid, the shear dependence of the intrinsic 
viscosity can be expressed as an unique, reduced function in terms of the 
parameter (M [TI l~/RT)v,q.  

If the polymer molecule is deformable, the reduced st,ress should contain 
a t,erni of t,he form: 

( M  [T lo/RT)7sq + 0.4~P((ho2) /RT)g  

( M  [7 IoIRT) [1 + (0.4W3K/ [7 lo) (1 /7s)  I t 1 2  

or 

where t12 = qsq is the maximum shear stress and K is the proportionality 
constant in the relationship (h02) = KM.  

Since from experiment only the maximum value of the shear stress t lz  
can be determined, and not the actual value of the shear stress, associated 
with the flow (the inelastic dashpot in the L-body description), our analysis 
implies that finite deformation gives rise only to a shift equal to the re- 
coverable shear of the shear dependence (velocity gradient dependence) 
curve along the reduced stress coordinate (M[7Io/RT)tlz,  but does not 
affect the shape of the [7]/[7IO versus ( M [ v l O / R T ) t l ~  plot. 

The existence of such a shift factor can be verified in the following 
manner. 

Consider the molecule to be rigid. I n  this case the effect of orientation 
can be analyzed in terms of the Scheraga calculations of the shear depend- 
ence of rigid ellipsoids of arbitrary axial ratio. For rigid molecules, the 
scale factor which has to be added to the value of log t l z  in order to shift the 
log ( [ 7 ] / [ 7 ] 0 )  versus log tlz curve on to the log ( [ r ] ] / [ ~ 7 ] ~ )  versus log q/Dmt 
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curve is equal to log M[q]o/RT.  
scale factor is given by: 

For deformable molecules, however, this 

[? IoIRT) [1 + (0.4W3W [?lo) ( 1 / d  1 
which contains a term inversely proportional to the solvent viscosity. 
This dependence is most clearly exhibited by a plot of (RT/[v]o)  (shift 
factor) versus l/ao, which plot should extrapolate to the molecular weight 
of the polymer molecule. 

Discussion ' 

The shear dependence of the intrinsic viscosity of four different fractions 
of polystyrene in four different solvents and at a number of different tem- 
peratures was measured in multibulb capillary viscometers. The vis- 
cometers have been described previouslys1 as well as the various shear 
corrections to the measured flow-time~.~~ 

. 
A 

- %%* 
- 'p.a. 

- - %\ 0 

- 0 

- 

- 
I I I I I I 

In Figure 2 all the results obtained are plotted as log [?I/ [ql0 versus log 
t12 and are all shifted so as to fit into the drawn curve, which is the Scheraga 
curve for the orientation of an ellipsoid with axial ratio equal to three. 
It is seen that this curve fits the data very well. The data obtained at the 
highest shear stress (about 10-15 dynes/cm.2) seem to deviate from this 
curve, which may not be too surprising since the whole stress range can 
most certainly not be described in terms of the orientation of an ellipsoid 
with fixed axial ratio. It is encouraging, however, that this relatively low 
stress range is fitted so well by a p = 3 curve. 
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1;' 
Fig. 3. Plot of (RT/[q]o)  shift vs. l /va  for fractions Tsand FIA1A1. The intercept corre- 

sponds to the molecular weight calculated from [TI,, in benzene from data of Leray." 

The quantities (RT/[710) X shift are listed in Table I and are plotted 
versus l/a in Figure 3. These plots should extrapolate to the molecular 
weight of the particular fraction. The points indicated on the intercept 
are the values of the molecular weight obtained from intrinsic viscosities 
and molecular weights of polystyrene fractions in benzene with a molecular 
weight larger than one million listed by L e r a ~ . ~ ~  This procedure was fol- 
lowed, since the intrinsic viscosity-molecular weight relationships for poly- 
styrene in various solvents established in the literature diverge greatly in 
the high molecular weight region. Moreover in good solvents the h1-M 
relationships may be The molecular weights calculated from 
the data of L e r a ~ ~ ~  are, however, in good agreement with the h1-M rela- 
tionship recently proposed by Altares et al.55 

I t  is seen that the lilies extrnpolntc to their respectivc intercepts and 
helice confirm the proposed relatioilship. 

The most interesting curve is that of fraction Ts. Only for this fraction 
were nieasureiiients available of the shear dependence under theta condi- 
tions. The experiniental data were obtained from earlier work of S o ~ i e s . ~ ~  
It is seen that the shift factor is not dependent on the solvent viscosity but 
has the value of the intercept, as would be the case if no net deformation 
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TABLE I 
Shift Factors and the Intrinsic Viscosity at Zero Shear Rate for 

Fractions Tg, T6, TT, and FIAIAl 

Log 
shift Temp., [?lo, 

Fraction factor "C. g./dl. 

FractionT5 +1.212 35 2.35 

-0.0344 20 10.50 
-0.013 40 Y.22 
-0.083 60 Y.14 

Fraction T6 -0.127 40 10.30 
+0.104 55 10.32 

FractionT7 +0.2Y6 25 8.50 
+0.241 40 8.44 
+0.27Y 55 8.47 

Fraction FIAIAl +O. 350 25 6.60 
+0.273 40 6.67 

707 

Solvent cpoise 

Cyclo- 0.761 

Benzene 0.6487 
Toluene 0.4650 
Toluene 0.390 

Benzene 0.4Y23 
Benzene 0.412 

Benzene 0.6028 
Benzene 0.4923 
Benzene 0.412 

Benzene 0.6028 
Benzene 0.4923 

hexane 
0.667 6.84 

2.51 
2.Y1 
3.51 

1.8Y 6.50 
2.08 

1.48 5.02 
1.77 
1.81 

1.67 3.81 
2.05 

* Data obtained from J. Timrnerrnan~.~S 
b Calculated from values of [v]  and M given by Leray.26 

of the molecule were present. In the analysis given above this can only be 
interpreted if the recoverable shear were to vanish in a theta solvent. 

The vanishing of the recoverable shear is not predicted by anyone of the 
equations derived on the basis of the Rouse-Zimm model. As stated pre- 
viously, the R-Z model represents essentially a simple Maxwell liquid 
which treats of relaxation only. The Maxwell liquid as generalized by 
Oldroyd, however, considers both relaxation and retardation. For an 
Oldroyd liquid the recoverable shear can vanish, provided the relaxation 
time and the retardation time are equal. 

The vanishing of the recoverable shear indicates that the net deformation 
of a Gaussian molecule, when averaged over complete rotation, is nil. In 
this sense the result of ZimmZ3 and the early theory of Peterlin,26 which 
both predict no shear dependence due to deformability for an ideally flexible 
polymer molecule, seem to be borne out by experiment. Therefore, the 
shear dependence observed in a theta solvent is associated with inelastic 
effects only. 

Although a rigid ellipsoid curve is used for fitting the data, similar results 
would have been obtained if the theory of Peterlin and Copickg had been 
employed, since the coefficient of (q/Dmt)2 is for both curves very similar 
(0.120 for the rigid ellipsoid curves and 0.148 in the Peterlin-Copick theory). 

Independent of any model is the finding that the curves representing 
the shear dependence of the intrinsic viscosity, measured in good solvents, 
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are systematically displaced from the shear dependence as measured in a 
theta solvent and that this displacement can be interpreted as arising from 
the finite deformation of the polymer coil in a good solvent. By coinci- 
dence, perhaps, it turns out that the choice of a rigid ellipsoid curve fits 
the shear dependence observed in the theta solvent with a scale factor 
equal to the molecular weight of the polymer. 

The predictions of the L-body formalism seem also to apply to the veloc- 
ity-gradient dependence of the extinction angle, insofar as the inner vis- 
cosity term found by L e r a ~ ~ ~  has all the properties predicted from a model 
where this term is interpreted as arising from the finite deformation of the 
molecule. Independent verification of the vanishing of the ((inner vis- 
cosity” term in the velocity-gradient dependence of the extinction angle 
under theta conditions would provide strong corroboration for the model 
proposed in this paper. 

On the basis of these experimental results it follows, that for a treatment 
of the effect of finite deformation on the shear dependence of the intrinsic 
viscosity one has to consider both relaxation and retardation processes, 
and that an Oldroyd liquid interpreted as an Llbody provides a better 
representation of finite deformation in flow than the usually considered 
Maxwell liquid, for which the recoverable cannot vanish. 

A separate calculation of the recoverable shear in terms of the appropriate 
relaxation and retardation times will not be attempted. The data show 
that under theta conditions these two times are equal. From Ptitsyn’s 
theory it follows that the modulus governing the deformation of the mole- 
cule is not influenced by excluded volume effects; hence, any dependence 
of the recoverable shear on the thermodynamic properties of the solvent 
will be reflected in the value of the monomeric friction coefficient p. 

One comment should be made on the effect of polydispersity. If the 
proposed model is interpreted strictly as a deformed ellipsoid model, then 
the shear dependence observed is due to the asymmetry of the molecules 
induced by the deformation. As such, the asymmetry then enters only as 
a scale factor, since smaller spheres will be deformed into smaller ellipsoids, 
but the axial ratio will be the same, regardless of size. Hence polydispersity 
will not influence the shape of the [ q ] / [ q l 0  versus (M[qIo/RT)qoq curve. 
However, the recoverable shear term is strongly dependent on the molecular 
weight distribution [J, is proportional to ( M z M 2  + l ) / M w ] ;  the shift fac- 
tor, therefore, will be very sensitive to the molecular weight distribution. 

In conclusion it may be pointed out that the effect on entanglements 
can be readily incorporated in the treatment given above. Entanglement 
effects are primarily associated with the velocity-gradient dependence of 
the solution viscosity. Appropriate rheological equations of state have 
been given by Lodges7 and Y a r n a m o t ~ . ~ ~  The theory of the latter author 
is also applicable to liquids possessing a non-Newtonian shear viscosity. 
Both theories treat entanglements in terms of a simple Maxwell model. 
Since the recoverable shear in the Yamamoto theory is given by the same 
expression given earlier in eqs. (23) and (25), it follows that entanglements 
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have no influence on the stress dependence of the 00w behavior. The 
entanglements are, therefore, considered as sufficiently loose so as not to 
impose a restriction on the deformation of the polymer molecule. In  this 
respect deformation is simpler than flow, which of course is greatly influ- 
enced by entanglements, since flow involves relative motion of molecules 
rather than relative motion of connected segments as in deformation. 

Hence, even in the presence of entanglements of the type considered by 
Lodge and Yamamoto, the stress dependence of the intrinsic viscosity 
should be the same as the stress dependence of qSp/c ,  since the recoverable 
shear is independent of concentration. Such behavior has been described 
earlier by van Oene and Cragg52 and can be inferred from the lack of con- 
centration dependence of the inner viscosity observed by Leray. 24 
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On a pass6 en revue les th6ories ant6rieures sur la relation enlre le cisaillement e t  la 
viscosit6 intrinsbque des macromol6cules deformables. La plupart de ces theories 
except6 celles de Cerf et Kuhn et Kuhn, predisent que pour un polymbre de series homo- 
logues la dependance du cisaillement [ q ] / [ q ] ,  peut atre exprim& en fonction du par- 
ambtre r6duit (M[v] , /RT)q.q.  Une telle representation n’est pas en accord avec les 
rksultats exp6rimentaux. Dans ce texte, un modble phenomenologique est reprbente 
en fonction des equations rhhlogiques d’6tat d’oldroyd. Ce modble permet de tenir 
compte de la d6formation finie de la mol6cule. En fonction de ce modble, une defor- 
mation finie conduit A une elasticite retard&, qui peut &re decrite en fonction du cisail- 
lement recupbrable mais qui n’influence pas la viscosite lors du cisaillement. L’6las- 
ticit6 retardbe cependant provoque un d6placement de la courbe [ q ] / [ v ] , ,  en fonction de 
(M[q],/RT)q,q le long de la coordonn& de la tension r6duite. Ce deplacement est 
proportionnel au poids moleculttire et est independant de la viscosite du solvant. Une 
comparaison avec l’exp6rience montre l’existence du facteur de dbplacement pr6vu pour 
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une serie de mesures sur des fractions de polystyrhe dans un bon solvant. La seule 
sBrie de mesures dans un solvant thbta montre que dans un tel solvant le deplacement, 
s'annule. On discute des consequences de cette decouverte. On montre aussi que le 
facteur de deplacement a beaucoup de proprietb en commun avec la viscosit&"interne," 
dBfinie par Cerf et experimentalement 6valuBe par Leray 8. partir de la dependance 
de l'angle d'extinction sur le gradient de vitesse. 

Zusammenfassung 
Es wird ein Uberblick uber die Theorie fur die Scherabhangigkeit der Viskositatszahe 

deformierbarer Polymermolekiile gegeben. Die meisten Theorien mit Ausnahmen 
derjenigen von Cerf und Kuhn-Kuhn, kommen zu dem Ergebnis, dass in polymerhomo- 
logen Reihen die Scherabhangigkeit [w] /Illlo durch den reduzierten Parameter (M[q], /  
R5")s.q ausgedriickt werden kann. Eine solche Darstellung steht jedoch mit den experi- 
mentellen Befunden nicht in tfbereinstimmung. In  der vorliegenden Mitteilung wird 
ein phanomenologisches Modell auf Grundlage der rheologischen Zustandsgleichung von 
Oldroyd angegeben. Dieses Modell gestattet eine Beriicksichtigung deren endlichen 
Deformation des Molekiils. Mit diesem Modell fuhrt eine endliche Deformation zu 
einer verrogerten Elastizitat, welche als ruckbildbare Scherung beschrieben werden kann, 
und welche die Scherviskositat jedoch nicht beeinflusst. Die verzogerte Elastizitat fuhrt 
ru einer Verschiebung der [?I /[rl],-(M[rl],/RT)rl.~-Kurve entlang der reduzierten Spann- 
ungskoordinate. Diese Verschiebung ist dem Molekulargewicht proportional und von 
der Losungsmittelviskositat unabhangig. Ein Vergleich mit dem Experiment zeigt die 
Existenz eines solchen Verschiebungsfaktors bei einer Messreihen Polystyrolfraktionen 
in einem guten Losungmittel. Eine Messreihe in einem Thetalosungmittel l b s t  erken- 
nen, dass in einem solchen Losungmittel die Verschiebung verschwindet. Die Bedeu- 
tung dieses Befundes wird diskutiert. Weiters wird gezeigt, dass der Verschiebungs- 
faktor viele Eigenschaften der von Cerf definierten und von Leray aus der Abhangigkeit 
des Ausloschungswinkels vom Geschwindigkeitsgradienten ermittelten inneren Viskosi- 
tat gemeinsam haten. 
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